

Experimentell kemi – Gävle 2017 Part 1

Lynn Hogue, Lynn@TerrificScience.org Mickey Sarquis, Mickey@TerrificScience.org

www.terrificscience.org

In addition to things we do with you check out our resources at www.TerrificScience.org/freebies/

CHEMISTRY with CHARISMA

24 Lessons That Capture & Keep Attention in the Classroom

> Terrific Science Press, with funding from the National Science Foundation, Ohio Board of Regents, and National Center for Research Resources, National Institutes of Health

volume 2 CHEMISTRY with CHARISMA

MORE 28 Lessons That Capture & Keep Attention in the Classroom

> Terrific Science Press, with funding from the National Science Foundation, Ohio Board of Regents, and National Center for Research Resources. National Institutes of Health

\mathbb{P} is learning without punishment!

If I were to present myself before you with an offer to teach you some new game— If I were to tell you an improved plan of throwing a ball,

of flying a kite, or

of playing leapfrog,

Oh, with what **ACCONTIGN** you would listen to me!

Well, I am going to teach you many new games. I intend to instruct you in a science full of

interest, wonder, and beauty

a science that will afford you amusement in your youth, and riches in your more mature years. In short, I am going to teach you the science of **CHEMISTRY**

— Dr. Scoffern, Devonshire, England, Chemistry No Mystery, 1848

no chemical reactions

no leather or rubber

no paint or coatings

no metals or polymers

No fabrics

No you!

TIMSS and PIRLS in Sweden

Chemistry instruction should give students the opportunity to:

- examine information
- communicate
- form an opinion on questions concerning energy, the environment, health, and society
- carry out systematic studies by formulating questions & plan, execute, and evaluate studies)
- use chemistry concepts, models, and theories to describe & explain chemistry in society, nature, and people.

Instruction

Teaching is about negotiation

Critical skills

- Big ideas planning and referring to
- Provide framework for students to engage in active learning process
- Small group to whole group transitions claims and evidence discussion
- Non threatening learning environment

Align science instruction with what scientists do

What do scientists do?

How keen are your powers of observation?

The old shell game.

"Super Slurper" (Sodium Polyacrylate): From Entertainment to...

METHOD

- Students do an activity or observe a demonstration
- Students form testable questions
- Students devise an experiment to answer testable question
- Students make observations and collect data
- Students interpret data to provide evidence
- Students make a claim about the system they are investigating
- Students use evidence to substantiate their claims

Your next challenge:

make observations formulate testable questions design an experiment collect evidence formulate a claim

Hot Stuff: Investigating Reusable Heat Packs

supersaturated sodium acetate solution

Crystallizing the Supersaturated Solution

- How much of the sodium acetate remains in solution after this crystallization process?
- Design an experiment to determine the amount of heat required to recrystallize this solid.

Additional research & literature reveals

^{06/03/03 08:40} SCANecified X: 4 scans, 4.0cm-1, apod weak Fourier Transform Infra Red Spectrometer (FTIR)

the fish is made of

Cellulose

Wrapper for Fortune Telling Fish

06/03/03 08:52 SCANecified X: 4 scans, 4.0cm-1 Fourier Transform Infra Red Spectrometer (FTIR)

the wrapper is made of

Polyethylene

SCIENCE

Argument-based inquiry

- Testable Questions
- Design appropriate investigations
- Data collection and analysis
- Make a claim
- Evidence

Construction and Critique (practices of science)

Interpreting data

- "This isn't working.. My results are wrong"
 - Evidence is what it is..
 - Even if the results may be unexpected
- "nothing is happening"
 - No noticeable change is valuable information
- Experiments are repeated many times to show **reliability** of data/observations

Testing if the type of hanger affects the results

Testing if the length of the string affects the results

Sound System honger

interaction the hanger mit a sound and the hanger Vibrated in My ear.

Grade 2 student's claim with substantiating evidence

evidonce

If the hanger vibrate I neard the hanger make Sound" I felt the hanger vibrate in my ear.

LOSES GOES TO A CONCERT

ISBN 0-374-35067-1

What types of observations?

Qualitative Observations Quantitative Observations

Discrepant events are only possible if **prior experience** would tell you otherwise

"Expect the unexpected"

Chinese proverb

Students do science by

- using observational skills
- forming testable questions
- designing experiments
- data collecting
- analyzing data to provide evidence for a claim that can be defended

ET WT 42.0 02 (2 LB 10.0 02)

Teachers set the perimeters

(asking students)

- Is there something you observed about your system that led you to ask this question?
- What materials will you need for your experiment?
- What data will you need to gather in order to answer your question?
- What tools and methods will you use to collect this data?

Student-generated Testable Questions

- Do all the colors act similarly?
- Does the temperature of the water affect the dissolving rate?
- If more than one M&M are in the same bowl, will the colors mix?
- Will the results be the same if I use oil instead of water?
- What will happen if I stack M&M's in a test tube instead of a bowl? Will the order of stacking make a difference?
- Are the results different if I pour the water over the M&M's as opposed to dropping them into water?
- Do different types of M&M's (peanut, pretzel) act similarly?
- Do other types of hard-shelled candy (Skittles, Reese's pieces) act in a similar manner?
- Is the color that dissolves in a sphere completely surrounding the candy?
- Would a colored sugar solution dropped in water act similarly?

Magic or Science?

Magic or Science?

Water saturated polymer has same index of refraction as water

close relatives

polyacrylamide Soil Moist

sodium polyacrylate

'Where'd the water go?' demo

Gro-Dinos

Tracing and counting squares to estimate growth over time

ISB<u>N</u> 0-06-444186-5

Reunite the FON and **MENTAL** aspects of scientific play !

By combining the fun/hands-on and mental/minds-on aspects of science teaching and learning, we have found that **BOTH** increased motivation and understanding result.